Temporal Modeling Approaches for Large-scale Youtube-8M Video Understanding
نویسندگان
چکیده
This paper describes our solution for the video recognition task of the Google Cloud & YouTube-8M Video Understanding Challenge that ranked the 3rd place. Because the challenge provides pre-extracted visual and audio features instead of the raw videos, we mainly investigate various temporal modeling approaches to aggregate the frame-level features for multi-label video recognition. Our system contains three major components: two-stream sequence model, fast-forward sequence model and temporal residual neural networks. Experiment results on the challenging Youtube8M dataset demonstrate that our proposed temporal modeling approaches can significantly improve existing temporal modeling approaches in the large-scale video recognition tasks. To be noted, our fast-forward LSTM with a depth of 7 layers achieves 82.75% in term of GAP@20 on the Kaggle Public test set.
منابع مشابه
Large-Scale YouTube-8M Video Understanding with Deep Neural Networks
Video classification problem has been studied many years. The success of Convolutional Neural Networks (CNN) in image recognition tasks gives a powerful incentive for researchers to create more advanced video classification approaches. As video has a temporal content Long Short Term Memory (LSTM) networks become handy tool allowing to model long-term temporal clues. Both approaches need a large...
متن کاملAn Effective Way to Improve YouTube-8M Classification Accuracy in Google Cloud Platform
Large-scale datasets have played a significant role in progress of neural network and deep learning areas. YouTube-8M is such a benchmark dataset for general multilabel video classification. It was created from over 7 million YouTube videos (450,000 hours of video) and includes video labels from a vocabulary of 4716 classes (3.4 labels/video on average). It also comes with pre-extracted audio &...
متن کاملThe Monkeytyping Solution to the YouTube-8M Video Understanding Challenge
This article describes the final solution 1 of team monkeytyping, who finished in second place in the YouTube-8M video understanding challenge. The dataset used in this challenge is a large-scale benchmark for multi-label video classification. We extend the work in [1] and propose several improvements for frame sequence modeling. We propose a network structure called Chaining that can better ca...
متن کاملYouTube-8M: A Large-Scale Video Classification Benchmark
Many recent advancements in Computer Vision are attributed to large datasets. Open-source software packages for Machine Learning and inexpensive commodity hardware have reduced the barrier of entry for exploring novel approaches at scale. It is possible to train models over millions of examples within a few days. Although large-scale datasets exist for image understanding, such as ImageNet, the...
متن کاملLearnable pooling with Context Gating for video classification
Common video representations often deploy an average or maximum pooling of pre-extracted frame features over time. Such an approach provides a simple means to encode feature distributions, but is likely to be suboptimal. As an alternative, we here explore combinations of learnable pooling techniques such as Soft Bag-of-words, Fisher Vectors, NetVLAD, GRU and LSTM to aggregate video features ove...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1707.04555 شماره
صفحات -
تاریخ انتشار 2017